All About Firewalls
 
  

Packet-filtering

A packet-filtering firewall is a router or computer running software that has been configured to screen incoming and outgoing packets. A packet-filtering firewall accepts or denies packets based on information contained in the packets' TCP and IP headers. For example, most packet-filtering firewalls can accept or deny a packet based on the packet's full association, which consists of the following:

Source address
Destination address
Application or protocol
Source port number
Destination port number

All routers (even those that are not configured to filter packets) routinely check the full association to determine where to send the packets they receive. However, a packet-filtering firewall goes one step further: Before forwarding a packet, the firewall compares the full association against a table containing rules that dictate whether the firewall should deny or permit packets to pass.

A packet-filtering firewall scans these rules until it finds one that agrees with the information in a packet's full association. If the firewall encounters a packet that does not meet one of the rules, the firewall will apply the default rule. A default rule should be explicitly defined in the firewall's table and, for strict security, should instruct the firewall to drop a packet that meets none of the other rules.

Rules to Live By. You can define packet-filtering rules that indicate which packets should be accepted and which packets should be denied. For example, you could configure rules that instructed the firewall to drop packets from specific untrusted servers (generally called hosts on the Internet), which you would identify in the table by their IP addresses. You could also create a rule that permitted only incoming e-mail messages traveling to your mail server and another rule that blocked incoming e-mail messages from an untrusted host that had flooded your network with several gigabytes of data in the past.

In addition, you can configure a packet-filtering firewall to screen packets based on TCP and User Datagram Protocol (UDP) port numbers. Configuring a firewall in this way enables you to implement a rule that tells the firewall to permit particular types of connections (such as Telnet and FTP connections) only if they are traveling to appropriate trusted servers (such as the Telnet and FTP server, respectively). However, the success of such a rule depends on a TCP/IP network convention: Servers (and clients) generally run particular TCP/IP applications over particular ports (often referred to as well-known ports), but servers are not required to use these ports.

Low Cost for Relatively Low Protection? The primary advantage of using a packet-filtering firewall is that it provides some measure of protection for relatively low cost and causes little to no delay in network performance. If you already have an IP router with packet-filtering capabilities, setting up a packet-filtering firewall will cost no more than the time it takes to create packet-filtering rules. Most IP routers, including those manufactured by Novell, Cisco Systems, and Bay Networks, can filter incoming and outgoing packets.

Packet filtering

Although the cost of a packet-filtering firewall is attractive, this firewall alone is often not secure enough to keep out hackers with more than a passing interest in your network. Configuring packet-filtering rules can be difficult, and even if you manage to create effective rules, a packet-filtering firewall has inherent limitations. For example, suppose you created a rule that instructed the firewall to drop incoming packets with unknown source addresses. This rule would make it more difficult--but not impossible--for a hacker to access at least some trusted servers with IP addresses: The hacker could simply substitute the actual source address on a malicious packet with the source address of a trusted client.

Layer Upon Layer. In addition, a packet-filtering firewall primarily operates only at the network layer of the Open Systems Interconnection (OSI) model. The OSI model, which was developed by the International Standards Organization (ISO), identifies the seven layers at which computers communicate, ranging from the physical media over which they communicate to the applications they use to communicate.

All firewalls rely on information generated by protocols that function at various layers of the OSI model. Knowing the OSI layer at which a firewall operates is one of the keys to understanding different types of firewalls. Generally speaking, the higher the OSI layer at which a firewall filters packets, the greater the level of protection the firewall provides.

Because a packet-filtering firewall generally checks information only in IP packet headers, sneaking packets through this type of firewall is relatively easy: A hacker simply creates packet headers that satisfy the firewall's rules for permitting packets. Beyond that, a packet-filtering firewall cannot detect the contents of a packet.


© Copyright 2008. All rights reserved.
Используются технологии uCoz